

Begriff "Telematik"

- Etwas verwaschene Definition: "Verbindung zwischen Informatik und Telekommunikation".
- Hier präziser als "Verkehrstelematik": Einsatz von Telematik im Straßen-, Schienen-, Wasser- und Luftverkehr.
- Wegen der Bedeutung für die Sicherheit:
 Historisch weite Verbreitung im
 kommerziellen Luftverkehr, in der gewerblichen
 See- und Fluß-Schiffahrt und im Schieneneinsatz.
- Die Straße hinkt noch ein Wenig hinterher.

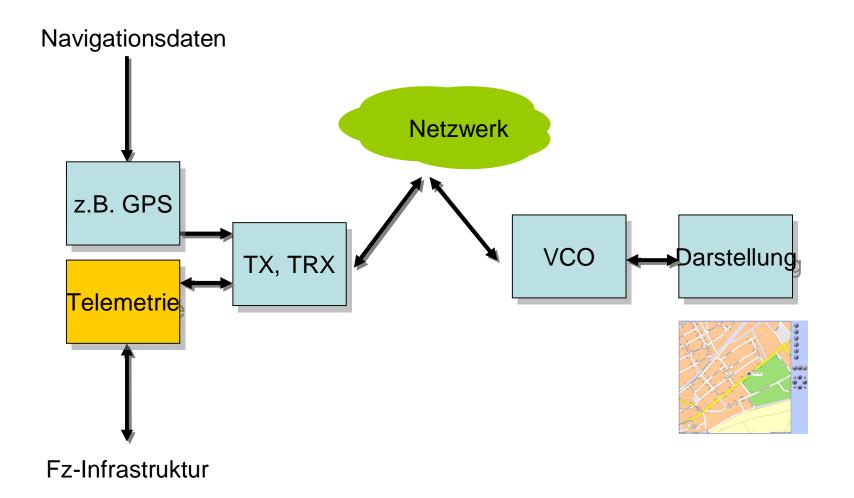
Verkehrstelematik auf der Straße

Kommerzielle Ziele:

- Flotten (Asset-) management
- Schutz vor Diebstahl und Beraubung
- Überwachung von Personal (🔦)

• "Öffentliche" Ziele:

- Mauterhebung
- Verkehrsleitung / Stauvermeidung
- Beschleunigung der Anfahrt (Feuerwehr)


• Private Ziele:

- Diebstahlschutz (Fahrzeuge)
- Technische Herausforderung

Grundfunktionen

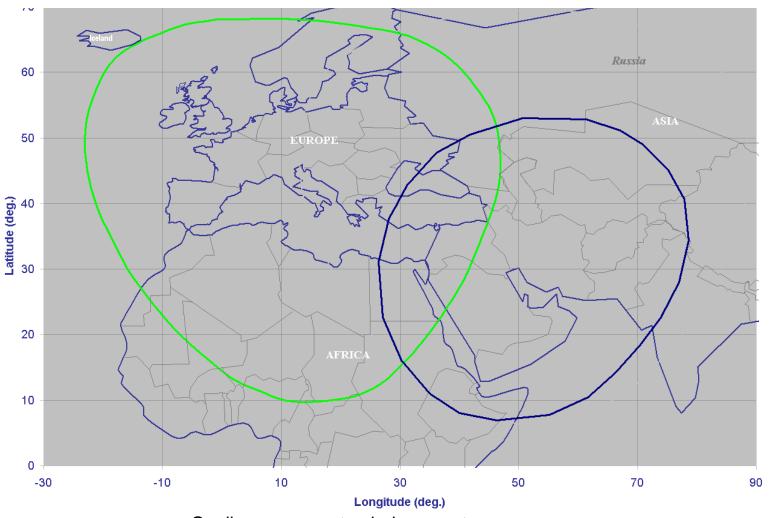
- Methode der Standortbestimmung
 - autonome Satellitennavigation (GPS, GLONASS, GALILEO)
 - Aktive und passive Multilateration im Kommunikationsnetzwerk ("Zellenortung", QUASPR)
- Methoden der Nachrichtenübertragung
 - Satellitenkommunikation (geostationär, umlaufend, LEO)
 - Mobile landgestützte Infrastrukturnetze (GSM, TETRA)
 - Ad-hoc-Kommunikation (z.B. APRS)
- Sekundärfunktionen
 - Nachrichtenübertragung
 - Alarmierung und Messwerterfassung (Telemetrie)
 - Fernwirken

Grundprinzip der Fahrzeugseite

Autonome (Satelliten-)navigation

- Das Fahrzeug bestimmt seinen Standort selbst
- Nutzung vorhandener Infrastruktur:
 - GPS, GLONASS
 Standardverfahren, keine zusätzlichen Kosten
 - DGPS (GPS, durch Differenzdaten verbessert)
 Höhere Genauigkeit, ggf. zusätzliche Kosten
 - (D)GPS mit lokaler Stützung "Koppelnavigation" mit Kreisel/Wegsensoren am Fz. Position auch in Tunneln etc. verfügbar
 - GALILEO
 Wichtigster Unterschied zu GPS:
 Dienstequalität/Integrität messbar, ggf. Zusatzkosten.

Aktive Multilateration im Netz


- Das Fahrzeug bestimmt seinen Standort selbst
- Aktive Zellenortung (GSM)
 - Feldstärkeberachtung
 - Messung der Signallaufzeit im Endgerät
 - Auswertung des Time-Advance-Wertes
- Randbedingungen
 - Kenntnis der Netztopologie im Endgerät erforderlich
 - Geringe Genauigkeit
 - Abhängigkeit von der Ausbaustufe des Netzes
 - "Kooperative" Endgeräte erforderlich

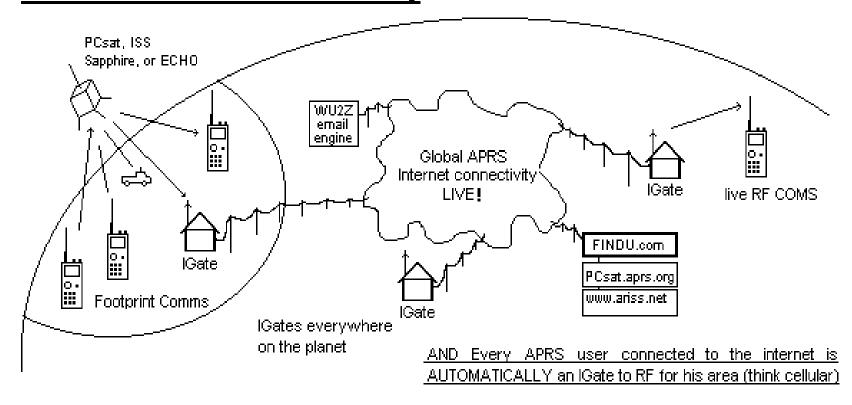
Passive Multilateration im Netz

- Das Netz bestimmt den Standort des Fahrzeugs
- Zellenortung (GSM)
 - Auswertung des Time-Advance-Wertes
- Randbedingungen
 - Mitwirkung des Netzes erforderlich
 - Ggf. erhöhte Kosten pro Ortung
 - Kann ohne Kenntnis des Georteten erfolgen ()

- Über geostationäre Satelliten
 - Satellitensysteme, z.B. INMARSAT, EUTELSAT
 - Exakt definierte örtliche und zeitliche Verfügbarkeit
 - Eignung für Sicherheitsaufgaben
 - meist einheitliche Kostenstruktur
- Über umlaufende Satelliten
 - Satellitensysteme, z.B. ORBCOMM/MICROSTAR
 - Verfügbarkeit ändert sich örtlich und zeitlich
 - daher für Sicherheitsaufgaben weniger geeignet
 - Kosten

Beispiel Satellitenkommunikation

Quelle: www.secutruck.de, www.transcore.com


- Über öffentliche (Mobilfunk-)Netze
 - GSM, UMTS
 - Übertragungsverfahren: GPRS (paketorientiert), SMS (veraltet)
 - Verfügbarkeit abhängig vom Netzausbau
 - Kosten vom Netzbetreiber abhängig (Roaming)
 - Daher: Kosten oft nicht exakt definierbar
 - Laufzeitproblematik bei SMS an Landesgrenzen
 - Im Gutfall und rein nationalen Anwendungen meist geringere Kosten als bei Satellitenbetrieb
 - ACHTUNG: Sabotage-Problematik

- Über nichtöffentliche Netze
 - TETRA, TETRAPOL etc.
 - Übertragungsverfahren: meist paketorientiert
 - Verfügbarkeit abhängig vom Netzausbau
 - Kosten vom Netzbetreiber abhängig
 - Aktuell: Neue Betrachtung durch Digitalfunk-Ausbau

- Spezialfall im APRS im Amateurfunk
 - Keine Netzwerk-Infrastruktur
 - Betrieb Peer-to-Peer (Fz-zu-Fz) über UI-Telegramme
 - Im Amateurfunk kein Geheimschutz
 - Protokoll weitgehend veröffentlicht
 - Ursprung: Militärische Anwendung

APRS

Global APRS Real-Time Connectivity (End-to-End Everywhere)

Quelle: Bob Bruninga WB4APR US Naval Academy Satellite Lab, http://eng.usna.navy.mil/~bruninga/aprs.html

Personal Tracking

Pocket Tracker \$89 kit:

Runs for 10 Hrs on 9v battery

Includes low power (0.25W) TX on 144.39 144.99

Quelle: Bob Bruninga WB4APR US Naval Academy Satellite Lab, http://eng.usna.navy.mil/~bruninga/aprs.html

Anmerkung: In den U.S.A. sehen sie das offenbar alles etwas lockerer...

Wichtige & kritische Überlegungen

- Zulässigkeit und Datenschutz :
 - Ortung und Überwachung von Personen
 - "...ohne deren Kenntnis?"
 - Vertraulichkeit, Missbrauch
 - Problempunkt: Nachrichtenwege
 - Benutzerakzeptanz
- Sicherheit und Zuverlässigkeit
 - Sicherheit = "Security" + "Safety"
 - Schutz gegen Sabotage und Ausspähen 🦠